i UNIVERSITY OF WASHINGTON
ELECTRICAL ENGINEERING

Some Optimization Topics

© 2017 B. Zhang and University of Washington

W UNIVERSITY of WASHINGTON




i UNIVERSITY OF WASHINGTON
ELECTRICAL ENGINEERING

Local and Global Optima

© 2017 B. Zhang and University of Washington

W UNIVERSITY of WASHINGTON




Which one is the real maximum?

f(x)

df d’ f
Forx=Aand x = D, we have: — =0 and

<0
dx dx*
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Which one is the real optimum?




Local and Global Optima

* The optimality conditions are conditions
 They do not compare separate optima

e |f | find an optimum can | be sure that it is the
global optimum??

* |n general, to find the optimum, we
must find and compare a/l the optima

* |In large problems, this can be very difficult
and time consuming
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Convexity

 |f the feasible set is convex and the objective
function is convex, there is only one minimum
and it is thus the global minimum
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Examples of Convex Feasible Sets
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Example of Non-Convex Feasible Sets
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Example of Convex Feasible Sets

A set 1s convex if, for any two points belonging to the set, all the

points on the straight line joining these two points belong to the set
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Example of Non-Convex Feasible Sets

XzT
[/ /1111117

VAV

—t-o—4—t—ot+——

d S|

a b C
X7 X7 X7 Xy

© 2017 B. Zhang and University of Washington

LTS

o>
X1

10



Example of Convex Function

f(x) 4
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Example of Convex Function




Example of Non-Convex Function

f(x)
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Example of Non-Convex Function

X2
A

()

Q

© 2017 B. Zhang and University of Washington

14



Definition of a Convex Function
f(X)

t(y)

X, y Xp X

A convex function 18 a function such that, for any two points x, and x;
belonging to the feasible set and any k such that O <k <1, we have:

z=kf (x,)+(1=k) f(x, )= f(y)=flhkx, +(1=k)x, ]
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Example of Non-Convex Function

f(x)
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Importance of Convexity

* If we can prove that a minimization problem is convex:
— Convex feasible set
— Convex objective function

=>»Then, the problem has one and only one solution

* Proving convexity is often difficult
 Power system problems are usually not convex

=>» There may be more than one solution to power system
optimization problems
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Motivation

 Method of Lagrange multipliers
— Very useful insight into solutions
— Analytical solution practical only for small problems

— Direct application not practical for real-life problems
because these problems are too large

— Difficulties when problem is non-convex
* Often need to search for the solution of practical
optimization problems using:
— Objective function only or
— Objective function and its first derivative or
— Objective function and its first and second derivatives
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Naive One-Dimensional Search

* Suppose:
— That we want to find the value of x that minimizes

J(x)

— That the only thing that we can do is calculate the
value of f(x) for any value of x

* We could calculate f(x) for a range of values of
x and choose the one that minimizes f(x)
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Naive One-Dimensional Search
f(x) ¢
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Naive One-Dimensional Search
f(x) ¢

* Requires a considerable amount of
computing time if range is large and a good
accuracy is needed
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One-Dimensional Search

f(x) %
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One-Dimensional Search

f(x) %
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One-Dimensional Search

f(x) 1

Current search
/ range
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If the function 1s convex, we have bracketed the optimum
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One-Dimensional Search
f(x) 4

Optimum is between x! and x?
We do not need to consider x° anymore
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One-Dimensional Search

f(x) ¢
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Repeat the process until the range 1s sufficiently small
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One-Dimensional Search

f(x) 1

The procedure is valid only if the function is convex!
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Multi-Dimensional Search

* Unidirectional search not applicable

* Naive search becomes totally impossible as
dimension of the problem increases

* |f we can calculate the first derivatives of the
objective function, much more efficient
searches can be developed

 The gradient of a function gives the direction
in which it increases/decreases fastest
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Steepest Ascent Algorithm

X2 A

.\




Steepest Ascent Algorithm

X2 A




Unidirectional Search

1 Objective function

>
Gradient direction
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Steepest Ascent Algorithm

X2 A




Steepest Ascent Algorithm
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Steepest Ascent Algorithm
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Steepest Ascent Algorithm
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Steepest Ascent Algorithm
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Steepest Ascent Algorithm
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Steepest Ascent Algorithm
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Steepest Ascent Algorithm
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Steepest Ascent Algorithm
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Steepest Ascent Algorithm
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Steepest Ascent Algorithm
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Choosing a Direction

* Direction of steepest ascent/descent is not
always the best choice

* Other techniques have been used with varying
degrees of success

* |n particular, the direction chosen must be
consistent with the equality constraints
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How far to go in that direction?

* Unidirectional searches can be time-
consuming

e Second order techniques that use information
about the second derivative of the objective
function can be used to speed up the process

* Problem with the inequality constraints
— There may be a lot of inequality constraints

— Checking all of them every time we move in one
direction can take an enormous amount of

computing time
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Handling of inequality constraints

2] How do I know that

I have to stop here? Move 1n the direction
of the gradient

ST
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Handling of inequality constraints

x2 A

How do I know that
I have to stop here?

ST
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Penalty functions

¢ Penalty
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Penalty functions

* Replace enforcement of inequality constraints
by addition of penalty terms to objective
function

¢ Penalty

— K(X_Xmax)2
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Problem with penalty functions

» Stiffness of the penalty function must be increased
progressively to enforce the constraints tightly enough

* Not very efficient method

¢ Penalty

I
xmin xmax
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Barrier functions

t Barrier cost

min
X
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Barrier functions

e Barrier must be made progressively closer to the limit
 Works better than penalty function
* Interior point methods

t Barrier cost

v ™\

min max
X X
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Non-Robustness

Different starting points may lead to different solutions if the
problem 1s not convex

(/

X2A
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Conclusions

* Very sophisticated non-linear programming
methods have been developed
 They can be difficult to use:

— Different starting points may lead to different
solutions

— Some problems will require a lot of iterations

— They may require a lot of “tuning”
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