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Local	and	Global	Op(ma	
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Which	one	is	the	real	maximum?	
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For x = A and x = D,  we have: 
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= 0  and  
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Which	one	is	the	real	op(mum?	
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Local	and	Global	Op(ma	

•  The	op(mality	condi(ons	are	local	condi(ons	
•  They	do	not	compare	separate	op(ma	
•  If	I	find	an	op(mum	can	I	be	sure	that	it	is	the	
global	op)mum?	

•  In	general,	to	find	the	global	op(mum,	we	
must	find	and	compare	all	the	op(ma	

•  In	large	problems,	this	can	be	very	difficult	
and	(me	consuming	
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Convexity	

•  If	the	feasible	set	is	convex	and	the	objec(ve	
func(on	is	convex,	there	is	only	one	minimum	
and	it	is	thus	the	global	minimum	
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Examples	of	Convex	Feasible	Sets	

©	2017	B.	Zhang	and	University	of	Washington	 7	

x1

x2

x1

x2

x1
x1

x2

x1
min x1

max



Example	of	Non-Convex	Feasible	Sets	
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Example	of	Convex	Feasible	Sets	
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A set is convex if, for any two points belonging to the set, all the �
points on the straight line joining these two points belong to the set
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Example	of	Non-Convex	Feasible	Sets	
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Example	of	Convex	Func(on	
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Example	of	Convex	Func(on	
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Example	of	Non-Convex	Func(on	
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Example	of	Non-Convex	Func(on	
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Defini(on	of	a	Convex	Func(on	

x

f(x)

xa xby

f(y)

z

A convex function is a function such that, for any two points xa and xb�
belonging to the feasible set and any k such that 0 ≤ k ≤1, we have: 

� 

z = kf x a( ) + (1− k ) f x b( ) ≥ f y( ) = f kx a + 1− k( ) x b[ ]
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Example	of	Non-Convex	Func(on	
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Importance	of	Convexity	
•  If	we	can	prove	that	a	minimiza(on	problem	is	convex:	

–  Convex	feasible	set	
–  Convex	objec(ve	func(on	

èThen,	the	problem	has	one	and	only	one	solu(on	
	

•  Proving	convexity	is	o]en	difficult	
•  Power	system	problems	are	usually	not	convex		
èThere	may	be	more	than	one	solu(on	to	power	system	

op(miza(on	problems	
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Non-Linear	Programming	
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Mo(va(on	
•  Method	of	Lagrange	mul(pliers	

–  Very	useful	insight	into	solu(ons	
– Analy(cal	solu(on	prac(cal	only	for	small	problems	
– Direct	applica(on	not	prac(cal	for	real-life	problems	
because	these	problems	are	too	large	

– Difficul(es	when	problem	is	non-convex	
•  O]en	need	to	search	for	the	solu(on	of	prac(cal	
op(miza(on	problems	using:	
– Objec(ve	func(on	only	or	
– Objec(ve	func(on	and	its	first	deriva(ve	or	
– Objec(ve	func(on	and	its	first	and	second	deriva(ves	
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Naïve	One-Dimensional	Search	

•  Suppose:		
– That	we	want	to	find	the	value	of	x that	minimizes	

f(x)	
– That	the	only	thing	that	we	can	do	is	calculate	the	
value	of	f(x)	for	any	value	of	x

•  We	could	calculate f(x) for	a	range	of	values	of 
x and	choose	the	one	that	minimizes f(x)
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x

f(x)

Naïve	One-Dimensional	Search	

©	2017	B.	Zhang	and	University	of	Washington	 	
21	



x

f(x)

Naïve	One-Dimensional	Search	

•  Requires	a	considerable	amount	of	
compu(ng	(me	if	range	is	large	and	a	good	
accuracy	is	needed	
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One-Dimensional	Search	
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One-Dimensional	Search	
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One-Dimensional	Search	

x

f(x)
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If the function is convex, we have bracketed the optimum

Current search�
range
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One-Dimensional	Search	

x

f(x)

x0 x1 x2x3

Optimum is between x1 and x2

We do not need to consider x0 anymore
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One-Dimensional	Search	

x

f(x)

x0 x1 x2x3

Repeat the process until the range is sufficiently small

x4
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One-Dimensional	Search	

x

f(x)

x0 x1 x2x3

The procedure is valid only if the function is convex!

x4
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Mul(-Dimensional	Search	

•  Unidirec(onal	search	not	applicable	
•  Naïve	search	becomes	totally	impossible	as	
dimension	of	the	problem	increases	

•  If	we	can	calculate	the	first	deriva(ves	of	the	
objec(ve	func(on,	much	more	efficient	
searches	can	be	developed	

•  The	gradient	of	a	func(on	gives	the	direc(on	
in	which	it	increases/decreases	fastest	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Unidirec(onal	Search	

Gradient direction

Objective function
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Steepest	Ascent	Algorithm	
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Choosing	a	Direc(on	

•  Direc(on	of	steepest	ascent/descent	is	not	
always	the	best	choice	

•  Other	techniques	have	been	used	with	varying	
degrees	of	success	

•  In	par(cular,	the	direc(on	chosen	must	be	
consistent	with	the	equality	constraints	
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How	far	to	go	in	that	direc(on?	

•  Unidirec(onal	searches	can	be	(me-
consuming	

•  Second	order	techniques	that	use	informa(on	
about	the	second	deriva(ve	of	the	objec(ve	
func(on	can	be	used	to	speed	up	the	process	

•  Problem	with	the	inequality	constraints	
– There	may	be	a	lot	of	inequality	constraints	
– Checking	all	of	them	every	(me	we	move	in	one	
direc(on	can	take	an	enormous	amount	of	
compu(ng	(me	
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Handling	of	inequality	constraints	
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Handling	of	inequality	constraints	
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Penalty	func(ons	
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Penalty

xmaxxmin



Penalty	func(ons	
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•  Replace	enforcement	of	inequality	constraints	
by	addi(on	of	penalty	terms	to	objec(ve	
func(on	

Penalty

xmaxxmin

K(x-xmax)2



Problem	with	penalty	func(ons	

©	2017	B.	Zhang	and	University	of	Washington	 50	

•  S(ffness	of	the	penalty	func(on	must	be	increased	
progressively	to	enforce	the	constraints	(ghtly	enough	

•  Not	very	efficient	method	
Penalty

xmaxxmin



Barrier	func(ons	
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Barrier cost 

xmaxxmin



Barrier	func(ons	
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•  Barrier	must	be	made	progressively	closer	to	the	limit	
•  Works	beher	than	penalty	func(on	
•  Interior	point	methods	

Barrier cost 

xmaxxmin



Non-Robustness	
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Different starting points may lead to different solutions if the�
problem is not convex



Conclusions	

•  Very	sophis(cated	non-linear	programming	
methods	have	been	developed		

•  They	can	be	difficult	to	use:		
– Different	star(ng	points	may	lead	to	different	
solu(ons	

– Some	problems	will	require	a	lot	of	itera(ons	
– They	may	require	a	lot	of	“tuning”	
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